![[differential-amp.png]]
```
Consider the op-amp circuit shown in the figure, where $v_{1}$ is the input connected to the inverting input of the op-amp and $v_{2}$ is the input connected to the non-inverting input of the op-amp. Use double dollar signs for LaTeX equation formatting.
a) Find an expression for the output voltage $v_0$.
b) Consider that $R_4=R_2$ and $R_3=R_1$. Find the new expression for the output voltage $v_0$.
```
(Basic Engineering Circuit Analysis (11th Edition), Example 4.5, page 158)
> [!Solution]-
> a)
> $
> v_{0} = \frac{R_{2}}{R_{1}} \left( 1+\frac{R_{1}}{R_{2}} \right) \frac{R_{4}}{R_{3}+R_{4}}v_{2}-\frac{R_{2}}{R_{1}}v_{1}
> $
>
> b)
> $
> v_{0} = \frac{R_{2}}{R_{1}}(v_{2}-v_{1})
> $
> [!Claude 3.5]-
> Claude 3.5 fails:
>
> Let's approach this problem step-by-step:
>
> a) To find an expression for the output voltage $v_0$:
>
> 1. This is a differential amplifier circuit with feedback.
> 2. For an ideal op-amp, we can assume that $v_- = v_+$ (virtual short) and that no current flows into the op-amp inputs.
> 3. Let's write equations for $v_-$ and $v_+$:
>
> $v_- = v_1 - i_-R_1$ <--- WRONG!
> $v_+ = v_2\frac{R_4}{R_3 + R_4}$
>
> 4. Since $v_- = v_+$, we can equate these:
>
> $v_1 - i_-R_1 = v_2\frac{R_4}{R_3 + R_4}$
>
> 5. The current $i_-$ also flows through $R_2$, so:
>
> $v_0 = v_- + i_-R_2 = v_2\frac{R_4}{R_3 + R_4} + i_-R_2$
>
> 6. Solving for $i_-$ from step 4:
>
> $i_- = \frac{v_1 - v_2\frac{R_4}{R_3 + R_4}}{R_1}$
>
> 7. Substituting this into the equation from step 5:
>
> $v_0 = v_2\frac{R_4}{R_3 + R_4} + \frac{R_2}{R_1}(v_1 - v_2\frac{R_4}{R_3 + R_4})$
>
> 8. Simplifying:
>
> $v_0 = \frac{R_2}{R_1}v_1 + (1 - \frac{R_2}{R_1})v_2\frac{R_4}{R_3 + R_4}$
>
> This is the general expression for $v_0$.
>
> b) If $R_4 = R_2$ and $R_3 = R_1$:
>
> 1. Substituting these into our expression:
>
> $v_0 = \frac{R_2}{R_1}v_1 + (1 - \frac{R_2}{R_1})v_2\frac{R_2}{R_1 + R_2}$
>
> 2. Simplifying:
>
> $v_0 = \frac{R_2}{R_1}v_1 + (1 - \frac{R_2}{R_1})\frac{R_2}{R_1 + R_2}v_2$
>
> 3. This can be further simplified to:
>
> $v_0 = \frac{R_2}{R_1}(v_1 - v_2) + v_2$
>
> This is the expression for $v_0$ when $R_4 = R_2$ and $R_3 = R_1$.
> [!GPT-4o after some corrections]-
>
> You're right, my earlier analysis contained an error. Let's correct the approach and derive the accurate expressions.
>
> ### Part (a): General Expression for the Output Voltage \(v_0\)
>
> 1. **Op-Amp Characteristics:**
> - The voltage at the inverting input \(v_-\) and the non-inverting input \(v_+\) will be equal due to the virtual short concept in an ideal op-amp.
> - There is no current into the op-amp inputs, i.e., \(i_+ = 0\) and \(i_- = 0\).
>
> 2. **Determine \(v_+\) and \(v_-\):**
>
> - For the non-inverting input, \(v_+\):
> $
> v_+ = v_2 \frac{R_4}{R_3 + R_4}
> $
> This is derived from the voltage divider formed by \(R_3\) and \(R_4\).
>
> - For the inverting input, we use the voltage at the inverting input \(v_-\):
> $
> v_- = v_1 - \left(\frac{v_1 - v_o}{R_1 + R_2}\right)R_1
> $
>
> Since \(v_+ = v_-\):
> $
> v_2 \frac{R_4}{R_3 + R_4} = v_1 - \frac{v_1 - v_o}{R_1 + R_2} R_1
> $
>
> $
> v_2 \frac{R_4}{R_3 + R_4} = v_1 \left(1 - \frac{R_1}{R_1 + R_2}\right) + v_o \frac{R_1}{R_1 + R_2}
> $
>
> Simplify the terms:
> $
> v_2 \frac{R_4}{R_3 + R_4} = \frac{v_1 R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2}
> $
>
> Solve for \(v_o\):
> $
> v_o \frac{R_1}{R_1 + R_2} = v_2 \frac{R_4}{R_3 + R_4} - \frac{v_1 R_2}{R_1 + R_2}
> $
>
> $
> v_o = \frac{(R_1 + R_2)}{R_1} \left( v_2 \frac{R_4}{R_3 + R_4} - \frac{v_1 R_2}{R_1 + R_2} \right)
> $
>
> Thus, the general expression for the output voltage \(v_0\) is:
> $
> v_o = \frac{R_1 + R_2}{R_1} \left( v_2 \frac{R_4}{R_3 + R_4} - \frac{v_1 R_2}{R_1 + R_2} \right)
> $
>
> ### Part (b): Simplified Expression with \(R_4 = R_2\) and \(R_3 = R_1\)
>
> Given:
> $
> R_4 = R_2 \quad \text{and} \quad R_3 = R_1
> $
>
> Plug these values into the expression found in part (a):
> $
> v_o = \frac{R_1 + R_2}{R_1} \left( v_2 \frac{R_2}{R_1 + R_2} - \frac{v_1 R_2}{R_1 + R_2} \right)
> $
>
> Simplify:
> $
> v_o = \frac{R_1 + R_2}{R_1} \cdot \frac{R_2}{R_1 + R_2} \left( v_2 - v_1 \right)
> $
>
> $
> v_o = \frac{R_2}{R_1} \left( v_2 - v_1 \right)
> $
>
> Thus, the simplified expression for the output voltage \(v_o\) is:
> $
> v_o = \frac{R_2}{R_1} (v_2 - v_1)
> $