The complex numbers $e^{j\frac{2\pi}{N}k}$ for $k \in \{0, \ldots\, N-1\}$ are equally spaced over the unit circle of the complex plane.
For $N=8$:
![[circuni.svg|300]]
It can easily be shown that the sum of the $N$ complex numbers is zero:
$
\sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}n}=0
$
Give the [[frequency periodicity of the discrete-time complex exponential signal]]:
$
e^{j \frac{2\pi}{N} kn} = e^{j \frac{2\pi}{N} (k+lN)n}
$
The previous result can be extended to:
$\frac{1}{N} \sum_{n=0}^{N-1} e^{j \frac{2\pi}{N} kn} =
\begin{cases}
1 & \text{if $k=mN$},\\
0 & \text{otherwise}.\\
\end{cases}$
Next: [[determination of the Fourier series coefficients]]