The discrete-time Fourier transform is a [[frequency domain representation]] for both periodic a non-periodic signals.
A discrete-time Fourier transform (DTFT) pair can be represented as:
$x(n) \xrightarrow[\cal DTFT]{}X(e^{j\omega})$
The [[DTFT analysis]] equation computes the discrete-time Fourier transform $X(e^{j\omega})$ from the discrete-time signal $x(n)$:
$X(e^{j \omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n}$
The [[DTFT synthesis]] equation recreates the discrete-time signal from the discrete-time Fourier transform:
$x(n) = \frac{1}{2\pi} \int_{2\pi} X(e^{j \omega}) e^{j \omega
n} d\omega$