The Blackman window is a weighted function that tapers off at both ends, resulting in a smoother transition between segments and reducing the effect of sharp discontinuities It is named after James W. Blackman, who developed the technique. The Blackman window is defined as: $ w(n) = \begin{cases} 0.42 - 0.5\cos\left(\frac{2\pi n}{M}\right) + 0.08 \cos\left(\frac{4\pi n}{M}\right)& 0 \leq n \lt M \\ 0 & \text{otherwise} \end{cases} $ ![[Window_function_and_its_Fourier_transform_–_Blackman_(n_=_0...N).svg]] [Wikimedia](https://en.wikipedia.org/wiki/File:Window_function_and_its_Fourier_transform_–_Blackman_(n_%3D_0...N).svg)