The Hamming window is a type of window function that reduces the effect of sharp transitions at the edges of a signal by gradually tapering the amplitude toward zero. The Hamming window is named after Richard W. Hamming, who introduced it in 1970.
It is defined as:
$
w(n) =
\begin{cases}
0.54-0.46\cos\left(\frac{2\pi n}{M}\right) & 0 \leq n \lt M \\
0 &\text{otherwise}
\end{cases}
$
![[Window_function_and_frequency_response_-_Hamming_(alpha_=_0.53836,_n_=_0...N).svg]]
[Wikimedia](https://en.wikipedia.org/wiki/File:Window_function_and_frequency_response_-_Hamming_(alpha_%3D_0.53836,_n_%3D_0...N).svg)