A **linear system** must simultaneously verify the properties of **additivity** and **homogeneity**. **Additivity** property: $ \begin{array}{c} S(x_1(n)) = y_1(n)\\ S(x_2(n)) = y_2(n)\\ \end{array} \xrightarrow[additivity]{} S(x_1(n) + x_2(n)) = y_1(n) + y_2(n) $ **Homogeneity** property: $S(x(n)) = y(n) \xrightarrow[homogeneity]{} S(a x(n)) = a y(n), a \in \mathbb{R}$ Where $a$ is an arbitrary constant. Examples of linear systems: - $y(t) = tx(t)$ - $y(n) = x^2(n)$ Examples of nonlinear systems: - $y(n) = \Re(x(n))$ - $y(t) = 2x(t) + 3$