A system is **time-invariant** if a time shift in the input signal results in an equal time shift in the output signal.
$S(x(n)) = y(n) \xrightarrow[\text{time-invariant}]{} S(x(n-n_0))
= y(n-n_0)$
Examples of time-invariant systems:
1. $y(t) = x(t-2)$
2. $y(n) = sin(x(n))$
Examples of time-varying systems:
1. $y(t) = x(2t)$
2. $y(n) = n x(n)$