The formal expression of the inverse z-transform requires the use of contour integrals in the complex plane:
$
x(n) = \frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} \, dz
$
For the analysis of [[discrete-time LTI system]] the [[transfer function]] is a rational function that can be inverted with the inspection method.
The inspection method makes use of common z-transform pairs such as:
$
a^{n}u(n) \xrightarrow[\cal ZT]{} \frac{1}{1-az^{-1}}, \, |z|>|a|
$
A rational transfer function can be decomposed in a sum of terms similar to the z-transform above using the partial fraction expansion:
$
\begin{align}
X(z) &= \frac{\sum_{k=0}^{M}b_{k}z^{-k}}{\sum_{k=0}^{N}a_{k}z^{-k}} \\
&= \sum_{k=1}^{N} \frac{A_{k}}{1-d_{k}z^{-1}}
\end{align}
$