If the [[discrete-time signal]] $x(n)$ is shifted by $n_{0}$ samples in the time domain, its z-transform becomes:
$
x(n - n_0)
\xrightarrow[Z]{}
z^{-n_0} X(z)
$
This is a direct result of the application of the [[z-transform]] equation to the signal $y(n)=x(n-n_{0})$:
$
\begin{align}
Y(z) &= \sum_{n = -\infty}^{+\infty} y(n) z^{-n} \\
&= \sum_{n = -\infty}^{+\infty} x(n-n_{0}) z^{-n} \\
&= \sum_{m = -\infty}^{+\infty} x(m) z^{-(m+n_{0})} \\
&= z^{-n_{0}} \sum_{m = -\infty}^{+\infty} x(m) z^{-m} \\
&= z^{-n_{0}} X(z)
\end{align}
$